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Abstract. Lagrangian cloud models (LCMs) are used increasingly in the cloud physics community. They not only enable a

very detailed representation of cloud microphysics but also lack numerical errors typical for most other models. However,

insufficient statistics, caused by an inadequate number of Lagrangian particles to represent cloud microphysical processes,

can limit the applicability and validity of this approach. This study presents the first use of a splitting and merging algorithm

designed to improve the warm cloud precipitation process by deliberately increasing or decreasing the number of Lagrangian5

particles under appropriate conditions. This new approach and the details of how splitting is executed are evaluated in box

and single-cloud simulations, as well as a shallow cumulus test case. The results indicate that splitting is essential for a proper

representation of the precipitation process. Moreover, the details of the splitting method (i.e., identifying the appropriate condi-

tions) become insignificant for larger model domains as long as a sufficiently large number of Lagrangian particles is produced

by the algorithm. The accompanying merging algorithm is essential to constrict the number of Lagrangian particles in or-10

der to maintain the computational performance of the model. Overall, splitting and merging did not affect the life cycle and

domain-averaged macroscopic properties of the simulated clouds. This new approach is a useful addition to all LCMs since it

is able to significantly increase the number of Lagrangian particles in appropriate regions of the clouds, while maintaining a

computationally feasible total number of Lagrangian particles in the entire model domain.

1 Introduction15

Lagrangian cloud models (LCMs) are a recently developed approach to simulate cloud physics (Andrejczuk et al., 2010; Shima

et al., 2009; Sölch and Kärcher, 2010; Riechelmann et al., 2012; Naumann and Seifert, 2015; Grabowski et al., 2018). These

models represent microphysics by individually simulated particles, so-called superdroplets, each representing a certain number

of identical real droplets. This number is called multiplicity or weighting factor. These models have been used successfully

to investigate various aspects of aerosol-cloud interactions (e.g., Andrejczuk et al., 2010; Hoffmann et al., 2015; Hoffmann,20

2017) or precipitation processes (e.g., Naumann and Seifert, 2016; Hoffmann et al., 2017; Dziekan and Pawlowska, 2017).

Unterstrasser et al. (2017) have reviewed all three currently available LCM collection algorithms, from which the so-called

all-or-nothing algorithm (Shima et al., 2009; Sölch and Kärcher, 2010) exhibits the generally best performance. Under certain

circumstances, however, e.g., an unfortunate initialization of superdroplets with equal weighting factors, even this approach

1

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-110
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 17 May 2018
c© Author(s) 2018. CC BY 4.0 License.



struggles to represent the precipitation process correctly. The reason for that is easily explained. Cloud droplets cover a wide

range of radii from micrometers to centimeters (e.g., Rogers and Yau, 1989). This system cannot be simplified to a couple of

superdroplets (with accordingly large weighting factors) to facilitate computability. In fact, a large number of superdroplets

(with accordingly small weighting factors) is needed to represent this range adequately. Since this is usually not the case, a

few of the largest superdroplets may contain unrealistically the majority of all liquid water. In order to improve the statistics of5

these particles, Unterstrasser et al. (2017) suggested that the splitting of these particles can help to improve the representation

of the precipitation process as it is already done for other microphysical processes (e.g., nucleation in ice clouds; Unterstrasser

and Sölch, 2014).

The present study introduces and verifies a splitting algorithm designed to improve the precipitation process. Additionally,

an accompanying merging algorithm is proposed that is able to unite superdroplets that are not required for an adequate rep-10

resentation of the precipitation process. Thus, the merging algorithm is essential to improve the computational performance of

the LCM. Both algorithms are tested in zero-dimensional box-simulations, a three-dimensional simulation of a single cumulus

cloud, and an established shallow cumulus test case. This paper is structured as follows. The next section briefly summarizes

the used collection algorithm and the basic framework of the applied LCM. Section 3 introduces the splitting and merging

algorithms, and section 4 shows results in which splitting and merging are applied. Finally, section 5 concludes the paper.15

2 Basic Equations of the LCM

This sections gives a short overview on the LCM’s basic equations. The applied LCM was initially developed by Riechelmann

et al. (2012) and its current version is documented in Hoffmann et al. (2017). Besides collection, the LCM calculates diffusional

growth as well as the transport of the superdroplets. These processes are coupled to the large-eddy simulation (LES) model

PALM (Maronga et al., 2015), which solves the non-hydrostatic incompressible Boussinesq-approximated Navier-Stokes equa-20

tions, and prognostic equations for the water mixing ratio and potential temperature. In addition to these coupled simulations,

we use a zero-dimensional box model, in which collision and coalescence are considered as the only microphysical process.

In the following, the applied collection algorithm will be summarized to show how collection affects a superdroplet’s weight-

ing factors and, thus, to understand how collection and splitting interact. The reader is referred to Unterstrasser et al. (2017)

for a more rigorous description of this so-called all-or-nothing approach and to comparisons with other LCM collection algo-25

rithms. For the following, it is assumed that all superdroplets are sorted by their weighting factor such that An >An+1 (the

case ofAn =An+1 will be discussed further below). For all superdroplet combinations with 1≤ n <m≤Np, whereNp is the

number of superdroplets located in a grid box, the probability that one droplet of superdroplet m collects an arbitrary droplet

of superdroplet n is given by

pmn =K(rm, rn)
∆t
∆V

·An, (1)30

where ∆t is the length of the collection time step, ∆V the volume of the grid box, rn the radius of a droplet represented by

superdroplet n, and K is the collection kernel (based on Hall (1980) for this study). Since pmn is usually smaller than one,
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collections only occur if pmn > ξ, where ξ is a random number uniformly chosen from the interval [0,1]. This probabilistic

approach ensures that the number of collections calculated in the model is identical to the number of collections resulting from

Eq. (1) if averaged over a sufficiently long period of time.

If a collection takes place, each droplet of superdropletm will collect one droplet of superdroplet n. This results in commen-

surate changes in the weighting factor An and the individual droplet mass mm =Am ·4/3πρlr3m with the liquid water density5

ρl, while Am and mn remain unchanged:

Âm =Am and Ân =An−Am, (2)

m̂m =mm +mn and m̂n =mn, (3)

where (̂..) marks the variable after collection.

If Am =An, the above-described collection would result in one superdroplet with a zero weighting factor. To avoid deleting10

this superdroplet, the droplets of the superdroplet that has grown by collection are distributed equally among the involved

superdroplets m and n:

Âm = Ân =Am / 2, (4)

m̂m = m̂n = 2 mm. (5)

Diffusional growth is described by15

rn
drn
dt

=
S

Fk +Fd
f(rn). (6)

The ventilation effect f(rn) describes the accelerated evaporation of large drops. S is the supersaturation (calculated in the

LES), and Fk and Fd are coefficients considering the effects of heat conduction and the diffusion of water vapor, respectively

(see, e.g., Rogers and Yau, 1989). Note that curvature and aerosol solute effects as well as gas-kinetic effects are neglected in

(6), but this equation is appropriate for the purpose of this study which focuses on the precipitation process, i.e., larger droplets20

for which these processes are irrelevant.

Transport of each superdroplet is described by

dXn

dt
= u(Xn) + ũn, (7)

where Xn is the location of the superdroplet, u the LES resolved velocity interpolated to the superdroplet’s location, and ũ is a

stochastic velocity component to parameterize subgrid-scale fluctuations not resolved in the LES (see, e.g., Sölch and Kärcher,25

2010).

3 Splitting and Merging

The following subsections will introduce techniques for the interactive modification of the number of superdroplets by splitting

and merging. This is fundamentally different from most previous LCM approaches, in which the number of superdroplets is
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set in the beginning of the simulation and remains constant thereafter (unless precipitation scavenges superdroplets). Note that

the splitting and merging algorithms will be tested for the all-or-nothing collection approach, but they are similarly applicable

to the average-impact approach introduced by Riechelmann et al. (2012).

3.1 Splitting

Splitting takes place if a superdroplet fulfills certain criteria. First, the radius of the superdroplet needs to be greater than or5

equal to a threshold rspl. This is necessary to limit splitting to the region of interest, i.e., coalescing droplets for which an

improved statistical representation is required. Second, the weighting factor of the superdroplet needs to be greater than or

equal to a threshold Aspl to avoid excessive and potentially useless splitting. And finally, Aspl is required to be at least larger

than ηspl, which is the number of superdroplets in which the superdroplet is split. This ensures that no superdroplets with an

unrealistic weighting factor of less than 1 are created.10

The numerical implementation of the splitting can be understood as a cloning of the superdroplet that has been determined

to be split. In addition to the already existing superdroplet, ηspl−1 new superdroplets are created. To conserve the total amount

of represented droplets, the weighting factor of these ηspl superdroplets is reduced to

A∗n =
An
ηspl

. (8)

Note that all ηspl superdroplets have identical properties immediately after splitting, including their location. However, each15

superdroplet will develop an individual trajectory independent from the others due to the stochastic velocity component in (7),

which is determined individually for each superdroplet.

In a first straightforward approach, the thresholds rspl, Aspl, and the splitting factor ηspl are explicitly prescribed. In the

following this method is abbreviated with S-mode, where the S stands for simple.

In a more advanced method (abbreviated G, standing for gamma distribution), the threshold Aspl and the splitting factor ηspl20

are estimated from an idealized gamma distribution, which is assumed to describe the distribution of droplets larger than rspl

in each grid box of the simulated model domain (e.g., Ulbrich, 1983):

n(r) =N0r
µ exp(−λr), (9)

where n(r) · dr states the number of particles per unit volume in the size range (r,r+ dr). Here, N0 is the intercept, µ is the

shape, and λ is the slope parameter of the gamma distribution. These parameters are calculated as25

N0 =
Nr

Γ(µ+ 1)
λµ+1, (10)

λ=
[πρl

6
(µ+ 3)(µ+ 2)(µ+ 1)xr

−1
] 1

3
, (11)

and

µ=
(1− ζ)n+ 1

ζ − 1
, (12)
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where Nr is the number concentration of droplets with r ≥ rspl, Γ is the gamma function, ρl is the density of liquid water, xr is

the mean geometric radius, and ζ is a factor calculated as

ζ =
M0M2

M2
1

, (13)

where Mk is the k-th moment of the mass density distribution (see Seifert, 2008). The calculation of these moments in the

LCM framework will be described in section 4.1.1.5

The assumed drop size distribution (DSD) is calculated from nbin = 100 logarithmically spaced bins. (Larger values for nbin

did not alter the results.) The center of bin i is calculated as

rbc,i = 10(log10(rmin)+iν), (14)

where

ν =
log10(rmax)− log10(rmin)

nbin− 1
. (15)10

The minimum and maximum radius of the discretized spectra are denoted with rmin and rmax, respectively. Here, these values

are set to rmin = rspl and rmax = 5mm, which ensures that the whole spectrum is included. Furthermore, the boundaries of bin

i are given by rbb,i = 10log10(rmin)+(i−0.5)·ν and rbb,i+1. Hence, the width of bin i is ∆ri = rbb,i+1− rbb,i.

It is assumed that the weighting factor of a superdroplet should be smaller than or equal to the approximated number of

droplets in the corresponding bin of the discretized gamma distribution. Thus, the weighting factor threshold is determined by15

Aspl,i = max[ni(rbc,i) ·∆ri ·∆V, 1]. (16)

Accordingly, the number of newly generated superdroplets depends on the ratio of the initial weighting factor to the estimated

number of droplets using the gamma distribution:

ηspl =
⌊
An
Aspl,i

⌋
. (17)

Since only a positive integer of superdroplets can be generated, the splitting factor is rounded down to the nearest whole20

number.

No matter which splitting mode is chosen, the splitting operations are executed at each time step of the LCM. Due to limited

computational resources, the generation of new superdroplets must be restricted to a feasible amount.Hence, two limitations

are introduced. The first restriction is the maximum splitting factor ηmax, i.e., the maximum number of clones produced per

splitting. This parameter is used for theG-mode, in which (17) might not be well-defined in the case of large droplets for which25

Aspl,i approaches zero. The second limitation ensures a computationally feasible number of superdroplets in every grid box by

introducing a fixed maximum NP,max. Accordingly, splitting operations are only executed if the number of superdroplets in one

grid box is smaller than NP,max. The latter threshold is applied for the G- and the S-mode. A suitable choice of these limits will

be presented in section 4.1.2.
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3.2 Merging

As a consequence of the potentially massive generation of new superdroplets due to splitting, the total number of superdroplets

may increase sharply, which makes simulations computationally very expensive. For this reason, a merging algorithm was

developed to decrease the number of superdroplets in order to reduce the required computational resources.

To avoid an impact of merging on micro- or macrophysical properties of the cloud, the algorithm is only executed in non-5

cloudy grid boxes (liquid water is lower than ql < 0.01 g kg−1). Accordingly, cloudy regions, in which a high number of

superdroplets is necessary for the correct representation of potential collisional growth, are left unaffected. Furthermore, it is

required that the merged superdroplets are smaller or equal to rmer = 0.1 µm, which ensures that only evaporated superdroplets

are affected, and not raindrops that have been precipitated from the cloud. Additionally, merging is only executed in grid boxes

in which the initial superdroplet concentration is exceeded and superdroplets exhibit a weighting factor that is smaller than a10

certain threshold Amer, rationally chosen to be smaller or equal to the initial weighting factor. This is done to avoid decreasing

the LCM’s baseline capability to represent DSDs set during initialization.

The algorithm is designed as follows. Based on the thresholds rmer and Amer, each superdroplet with rm ≤ rmer and Am ≤
Amer in a non-cloudy grid box is merged with the next superdroplet of the same grid box. Here, the next superdroplet is the

superdroplet located next in the memory, which enables an efficient execution of the merging algorithm. The new weighting15

factor of the remained superdroplet (index n) is mass-weighted and given byA∗n =An+Am·r3m/r3n , while the other superdroplet

(index m) is deleted. Accordingly, this leads to a new integral mass M∗
n =Mn +Mm, guaranteeing mass conservation. An

averaging of other superdroplet properties (e.g., velocities components, radius, and location) is not implemented and probably

not necessary for the correct representation of the cloud since merging is restricted to a cloud-free environment.

The use of the merging algorithm inside the certain regions of the cloud where collection plays only a subordinate role is20

also conceivable. However, the (probably sophisticated) determination of necessary thresholds is not within the scope of this

study.

4 Applications

4.1 Box Model Simulations

In the following box simulations, the sensitivity of the LCM collection process to the number of simulated superdroplets,25

different splitting approaches, and their specific parameters is investigated.

4.1.1 Setup

The grid box is isotropically spaced with ∆x= ∆y = ∆z = 20m. The simulation time is 3600s with a constant time step

of 1 s. To ensure adequate statistics, 25,344 boxes are calculated, and results are averaged over this ensemble. (The number

of ensemble members represents the maximum amount of grid boxes which can be calculated on 4 computing nodes in an30

appropriate time.) In the following this method is referred as single-box model.
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Besides the traditional single-box approach a new multi-box approach is introduced. In contrast to the calculation of in-

dependent grid boxes, the multi-box approach allows superdroplets to move from one grid box to the next by prescribing a

stochastic velocity (but no mean motion) in (7). The stochastic velocity component is chosen is such a way that it corresponds

to a kinetic energy dissipation rate of εbox = 0.01m2s−3, which is typical for shallow cumulus clouds (e.g., Shaw et al., 1998).

This multi-box approach has one distinct advantage over the ensemble mean of the same amount of box model simulations5

(single-box model), which results from the difficulties to initialize a DSD with superdroplets of a constant weighting factor, as

it is done in most applications of LCMs in the literature. A single box model simulation suffers crucially from this initialization

method due to a wrong representation of the largest and rarest superdroplets (Unterstrasser et al., 2017, their Fig. 17). In

doing so, the rarest and largest, and therefore most important superdroplets for the collection process, are a priori over- or

underestimated. An exchange of superdroplets between the collection boxes helps to mitigate this problem. Moreover, this new10

approach is closer to the representation of collection in three-dimensional simulations, in which a superdroplet is not bound to

a single grid box.

The impact of different numbers of superdroplets per grid box and the use of splitting for the traditional single-box approach

will be discussed first; then, the impact of the new introduced multi-box approach will be presented for both splitting and

non-splitting cases. Box model simulations will be compared to the results of Wang et al. (2007), who used a high-resolution15

bin model. The purpose of this study is, however, not the exact reproduction of these results but a computationally efficient

approximation to them using splitting. Accordingly, the initialization of the box simulation follows Wang et al. (2007), using

an exponential initial DSD:

n(r, t= t0) =
3Ninit

r30
· r2 exp

(
−r

3

r30

)
, (18)

where Ninit = 300cm−3 is the droplet number concentration. The initial mean radius is r0 = 9.3µm, which leads to a liquid20

water content ofL0 = 1g m−3. Following Wang et al. (2007), we set the minimum droplet radius to rmin = 1.5µm. superdroplet

radii are then selected by a random generator which follows the distribution given by (18). All superdroplets receive the same

initial weighting factor:

Ainit =
Ninit ·∆V

NP
, (19)

which ensures the number concentration of 300cm−3. This method is also described as νconst-init in Unterstrasser et al. (2017),25

which has been chosen in this study to resemble the initialization of superdroplets in less-idealized applications but also

significantly hinders collisional growth.

In addition to analyzing the DSD directly, the temporal development of the zeroth and second moment of the mass density

distributions is examined. Due to mass conservation in all applied approaches, the first moment is constant in time and will not

be shown. The moments of the mass distribution fm are defined as30

Mk =
∫
mkfm(m) dm, (20)
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where m is the mass and fm(m) denotes the number concentration distribution. Note that the zeroth moment M0 is the

number concentration and the second moment M2 is proportionate to the radar reflectivity, and thus highly sensitive to the

largest droplets in the DSD.

For a given superdroplet ensemble the moments for each grid box are calculated with

Mk =
NP∑

n=1

Anm
k
n/∆V, (21)5

where mn is the single droplet mass (mn = 4/3πρlr3n) of a superdroplet.

4.1.2 Box Model Results

First, the sensitivity of the collision algorithm to the number of superdroplets is examined using the LCM as single-box model.

Second, the improvement of a splitting method on the collisional growth for this approach is evaluated. Subsequently, those

investigations are repeated for the multi-box approach, where superdroplets are not fixed to a certain grid box, but instead10

experience a stochastic motion between the grid boxes.

Single-Box Approach

Figures 1 and 2 show the mass density distribution after 3600s and the temporal development of the moments for the LCM

applied as a single-box model. The results are averaged over the entire ensemble of simulated realizations. Each grid box is

initialized with a different number of superdroplets (colored lines). The reference solution of Wang et al. (2007) is shown as a15

black solid line.

In Fig. 1, a significant deviation of the mass density distribution from the reference solution can be seen for all configurations.

An excessively pronounced first maximum is found for all superdroplet concentrations, while the second maximum is too small

and occurs too far to the left. Also, oscillations occur for radii larger than 100,µm, resulting from insufficient superdroplet

statistics in this range. However, as the initial number of superdroplets increases, the depletion of the first maximum and20

the development of the second maximum is reproduced better. Figure 2a shows that in all cases the decrease in the number

concentration is underestimated. Also for the second moment (Fig. 2b), values are predicted too low in nearly all cases. All

in all, it can be observed that an increase in the number of superdroplets leads to a better agreement of the results with the

bin-model even though difference are still significant for 1000 superdroplets per grid box.

In Fig. 3 and 4 the mass density distribution after 3600s and the temporal development of the moments applying the splitting25

algorithm in different configurations are shown. Again, the splitting modes are abbreviated with S for the simple splitting

method and G for using the splitting method based on a gamma distribution. The number following S or G indicates the

splitting radius in microns. For all simulations, the maximum permissible number of superdroplets per grid box is limited

to NP,max = 1000. The maximum splitting factor is ηmax = 20. By selecting these limits, which are chosen to represent the

upper limit of computationally feasible three-dimensional simulations, it is possible to obtain an estimate of the quality of the30
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individual splitting methods. The influence of the choice of these parameters is discussed below. All simulations are initialized

with NP = 87 superdroplets per grid box.

The black dashed line (const.) shows the reference LCM case in which no splitting is applied. Comparing the non-splitting

case to splitting cases the results are significantly improved with respect to the reference solution. More precisely, the oscilla-

tions that occur for large droplet radii are successfully removed by splitting. Furthermore, a better representation of the second5

maximum is achieved by splitting, too. Independent of the splitting mode, simulations with the same splitting radius provide

similar results. The only exception is between the simulations G10 and S10, in which the the assumed gamma distribution

enables effective splitting at slightly larger radii in G10 compared to S10. This results in a better agreement of S10 with the bin

reference. In general, a reduction of the splitting radius leads to an improved representation of the mass density distribution.

However, for all splitting simulations the reduction of the first maximum is underestimated, while the second maximum is only10

inadequately represented.

Similar conclusions are possible from Fig. 4, in which the timeseries of zeroth and second moment of the DSD are shown.

The best agreement for the number concentration is achieved by S10, where many superdroplets are cloned at a very early stage.

For all splitting configurations, the second moment shows a strong improvement in comparison to the LCM reference case

without splitting (const.) where this value is largely underestimated. Accordingly, splitting leads to an improved representation15

of the collisional growth in LCMs but there are still very large deviations from the bin reference.

These results exhibit how strongly collisional growth suffers from the initialization with a constant weighting factor, con-

sistent with Unterstrasser et al. (2017). Since large superdroplets are initialized only in a few grid boxes, collisional growth is

subject to a great variability in the different realizations among the ensemble. Due to that, the following subsection will repeat

this investigations using the multi-box approach, which reflects the collisional growth in 3D-applications more appropriately.20

Multi-Box Approach

Figure 5 shows the mass density distribution after 3600s time for different numbers of superdroplets (colored lines) using

the multi-box approach without splitting. One can see that as the number of superdroplets increases, a better agreement with

the bin model is achieved. Especially the simulations with 512 and 1000 superdroplets per grid box can reproduce the mass

density distribution well. However, for these cases, a stronger decrease of the first maximum is observed. This can be attributed25

to accelerated accretion, which is favored by the combination of a few large droplets with an overestimated weighting factor

and a large number of superdroplets with radii of about 10 µm. In contrast, a decelerated depletion of the first maximum and

a weaker second peak are detected for simulations with a lower number of superdroplets. This results from the insufficient

representation of the initial DSD, especially that of large droplets, which are crucial for effective collisional growth.

In Fig. 6, the temporal evolution of the number concentration and the second moment are shown. In simulations with a high30

number of superdroplets, a too strong reduction of the number concentration is predicted, and contrary the decrease of the

zeroth moment is underestimated in cases with only 15 and 37 superdroplets. This tendency is also observed for the second

moment. Simulations with a high number of superdroplets overestimate the reference, whereas simulations with only a few

superdroplets result in too low values. However, comparing the results of the non-splitting cases (const.) in the single-box and

9

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-110
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 17 May 2018
c© Author(s) 2018. CC BY 4.0 License.



the multi-box simulations, the latter already provides improved results with respect to the bin model. The results show that this

initialization artifact can be successfully mitigated by the newly introduced stochastic exchange between the grid boxes. For

typical applications, however, the required amount of at least 512 superdroplets per grid box, necessary to derive satisfying

results without splitting, is computationally unfeasible.

To maintain a reasonable amount of superdroplets, these box-simulations will be repeated now, using the splitting approach.5

Here, all parameters (initializing all simulations with 87 superdroplets per grid box) and splitting thresholds are identical as for

the single-box approach described above but the superdroplets are now allowed to move between grid boxes.

Figure 7 shows the mass density distribution after 3600s for different splitting configurations. Clear differences in the

consistency with the bin reference solution can be seen. In particular, the simulations S10 and G10 show a good agreement

with the results of Wang et al. (2007). In both cases, the bimodal shape of the spectrum is represented well. However, for the10

other simulations, the deviation from the reference solution increases with increasing splitting radius, but less with the splitting

mode. Both simulations with a splitting radius of 40 µm show no improvements in comparison to a simulation without splitting

(const., black dashed line), except in the right tail of the distribution. Figure 8 shows the moments for the different splitting

configurations. Both plots indicate a slightly faster precipitation process than in the bin model, but the general agreement with

the reference is much higher than without splitting (Fig. 6).15

All in all, it is shown that collisional growth is better represented by using the splitting method in both the single-box

and multi-box simulations. Furthermore, the choice of the splitting mode is secondary, but the splitting radius is identified

as the most crucial parameter. The multi-box simulations exhibit a distinct advantage over the single-box simulations. Due

to the the presence or absence of sufficiently large droplets that might initiate collision and coalescence, as a result of the

initialization, collisional growth can be be overestimated in certain grid boxes while it is underestimated in others. Splitting20

and the subsequent stochastic exchange are able to distribute these so-called precipitation embryos among the entire ensemble

where they are able to initiate collision and coalescence as sketched in Fig. 9, which would not be possible in the single-box

approach.

Sensitivity to Splitting Thresholds

The limiting parameters of the splitting algorithm are now examined in sensitivity studies using the multi-box approach. For this25

purpose, the parameters of the maximum possible number of superdroplets per grid box NP,max, the maximum splitting factor

ηmax, and the splitting radius rspl are varied for the splitting mode G, which base state is defined as rspl = 10µm, ηmax = 20,

and NP,max = 1000. This base state is varied by individually changing the parameters rspl, ηmax, and NP,max.

Figure 10 a shows the mass density distributions after 3600s for different values for NP,max. We find that a value of NP,max =

150 is sufficient to reach convergence for this setup. This reduction of the maximum number of superdroplets per grid box30

results in a reduction of the computational time by a factor of 15 compared to the simulation with NP,max = 1000.

The sensitivity studies for the maximum splitting factor show that this has no influence on the results (Fig. 10 b). An expla-

nation for this is that the algorithm is executed at every time step and thus only the clone rate but not the absolute number of

the clones is affected. More precisely, a low value of ηmax may reduce how many clones are produced at a time step. However,
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results show that this effect is negligible since a superdroplet will be cloned sufficiently fast at the subsequent time steps as

long as NP ≤ NP,max.

As shown before, the development of the spectrum is highly sensitive to the choice of the splitting radius. Figure 10c shows

that the results converge with decreasing splitting radius, with no significant deviations for configurations with rspl ≤ 15µm.

This can be attributed to the fact that especially the largest droplets (in this case with radii of approximately 15µm) are5

crucial for initiating the collisional growth. Accordingly, an improved representation of these droplets leads to an improved

representation of the whole collisional growth process.

4.2 Single Cloud

4.2.1 Setup

In this case, we are simulating an idealized shallow cumulus cloud in form of a rising warm air bubble as in Hoffmann et al.10

(2017). The model domain is 1920m× 7680m× 3840m in x-, y- and z-direction, respectively. An isotropic grid spacing of

20 m is used. The simulation time is 3000 s while using a constant time step of 0.1s. The warm air bubble is triggered by an

Gaussian-shaped potential temperature perturbation θ∗

θ∗(y,z) = θ0 · exp
[
−1

2
·
((

y− yc

σy

)
+
(
z− zc

σz

))]
, (22)

where θ0 = 0.4K is the maximum temperature difference, which decreases with a standard deviation of σy = 200m and σz =15

150m in y- and z-direction, respectively. The center of the bubble is set to yc = 3840m and zc = 170m. Due to the two-

dimensional character of the temperature excess, the initial temperature perturbation is elongated homogeneously along the

x-axis.

The initial profiles for temperature and specific humidity are based on the shallow cumulus case by vanZanten et al. (2011).

Note that no background winds, large-scale forcings, or surface fluxes are considered. The superdroplets are released at the20

beginning of the simulation and are uniformly distributed in the entire model domain. For all three directions in space, the

average distance of the superdroplets is initially 4.5 m. This results in a superdroplet concentration of approximately 87 super-

droplets per grid box and roughly 4.55 ·108 superdroplets in total. Using a weighting factor of Ainit = 9.0 ·109, an initial cloud

condensation nuclei (CCN) concentration of 100cm−3 is represented. Additionally, simulations with 15 and 186 superdroplets

per grid box are carried out, in which the weighting factor is adjusted such that the CCN concentration of 100cm−3 is retained.25

If merging is applied, only superdroplets with a radius smaller than rmer = 0.1µm and with a weighting factor smaller than

Amer =Ainit/2 are allowed to merge.

At the surface, superdroplets are absorbed if their radius is larger than 1.0 µm. For smaller particles, a reflection boundary

condition is assumed to avoid that the surface acts as a CCN sink. Horizontal boundaries are prescribed with cyclic conditions.

Moreover, for collision and coalescence, the kernel by Hall (1980) is used. An overview of all conducted simulations is given30

in Table 1.
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Table 1. Summary of the main parameters for the single cloud simulations.

Simulation NP initial weighting factor Splitting rspl NP,max ηspl/max Merging

const. NP15 15 5.0× 1010 no - - - no

const. NP87 87 9.0× 109 no - - - no

const. NP186 186 4.3× 109 no - - - no

S10 87 9.0× 109 yes 10 µm 150 20 no

S20 87 9.0× 109 yes 20 µm 150 20 no

S20 merging 87 9.0× 109 yes 20 µm 150 20 yes

G20 87 9.0× 109 yes 20 µm 150 20 no

G20 merging 87 9.0× 109 yes 20 µm 150 20 yes

4.2.2 Single Cloud results

Microphysical Properties

Figure 11 shows the cloud averaged mass density distribution at t= 1800s for the configurations listed in Tab. 1. The left part

of the spectrum is reproduced quantitatively consistent in all cases. This implies that both the splitting and the merging process

have no artificial impact on the diffusional growth process. However, the right tail of the DSDs differs significantly when the5

splitting algorithm is applied. The biggest drops are almost 350 µm smaller for the reference case (black lines) compared to

simulations with splitting. Furthermore, splitting effectively reduces the fluctuations which occur in the reference cases for radii

above 100 µm. The mass density distributions imply that the choice of the splitting mode does not affect cloud microphysical

results. Likewise, the simulation S10, in which the splitting radius is reduced to rspl = 10µm, shows almost no difference in the

mass density distribution compared to cases with rspl = 20µm. Thus, it can be deduced that a splitting radius of rspl = 20µm is10

sufficient for this cloud. Further investigations (not shown) in which rspl is successively increased to 30µm show that a larger

splitting radius leads to strong deviations from simulations with smaller splitting radius. This indicates that droplets with radii

larger than 20µm need to be represented in a statistically sufficient way to initiate the precipitation process correctly. It should

be emphasized, however, that these results are only valid for a cloud with a relatively strong diffusional growth. A reduction of

the splitting radius might be required for settings in which collisions dominate the droplet’s growth at smaller radii as it is the15

case in the previously presented box-simulations.

This behavior can be ascribed to different requirements on the superdroplet number for the convergence of different growth

processes. The left part of the spectrum is dominated by diffusional growth which can be sufficiently represented by just a

couple of superdroplets per grid box. By contrast, collisional growth is highly sensitive to the superdroplet number and the

correct representation of large droplets. An improved representation of these droplets is ensured by the splitting algorithm, no20

matter what splitting mode is used.
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The improved statistics of large superdroplets are also shown in Fig. 12, where the absolute number of superdroplets per

logarithmic radius (log(r)) bin is presented. It is noticeable that in the reference simulations, this number decreases signifi-

cantly for larger droplets (starting from a radius of approximately r = 20µm). In simulations in which no splitting operations

are carried out, the largest droplets are represented by only a few tens of superdroplets in the whole model domain. For the

S-mode, the superdroplet concentration is kept almost constant (except in the right tail) for all splitting cases. For theG-mode a5

second maximum at 100 µm can be observed. This can be related to the calculation of the splitting criterion. The approximation

of the mass density distribution by a gamma distribution results in a somewhat lower splitting factor for superdroplets close to

the splitting radius in comparison to the S-mode, which shifts the superdroplet production to larger radii in the G mode.

Macrophysical Properties

In Fig. 13, the development of the cloud is shown in timeseries of several macroscopic properties. The behavior of the different10

splitting configurations can be clearly seen in Fig. 13a, which depicts the ratio of the current superdroplet number to its initial

value. In simulations without splitting, the superdroplet number remains nearly constant. A clear increase in the superdroplet

number can be observed when splitting is used, with maximum increase of about 15 % for S10. In all other splitting cases, the

increase in superdroplet number is notably lower and starts approximately 500 s later, which corresponds to the larger splitting

radius of rspl = 20µm. The lowest increase in superdroplet number is observed in the merging cases in which the maximum15

number of superdroplets is reached during the growing phase of the cloud and decreases in the dissipation stage.

Figure 13b and 13c show the temporal evolution of the liquid water path (LWP) and the rain water path (RWP). The RWP

is defined as the integral mass of all droplets with r ≥ 40µm. It is notable that the LWP is the same for all simulations, which

emphasizes the mass conserving character of the splitting algorithm and its negligible impact on the general development of

the cloud. All splitting configurations show higher RWPs in comparison to the reference runs without splitting. This increase20

of up to 12% is a direct result of the improved collisional growth process in the splitting configurations, resulting in more

numerous and larger rain drops. This is also observed for the radar reflectivity (Fig. 13d), which is proportional to the second

moment of the DSD and hence more sensitive to larger droplets.

Figure 13e and 13f display the precipitation rate and the total precipitation reaching the ground. The precipitation rate in the

reference simulations without splitting exhibit high temporal variances (black lines). Those variances are successfully reduced25

in all splitting simulations. This can be explained by the better representation of precipitation in the splitting simulations by

a larger number of superdroplets, resulting in a more uniform removal of liquid water by precipitation. As expected from the

RWP, splitting slightly increases the total precipitation.

Figure 14 shows the effect of splitting on the spatial distribution of rain after 2100 s simulated time for the NP87 simulation

(left panel) and the S20 splitting simulation (right panel). Similar to the reduced temporal variance in the time series of the pre-30

cipitation rate (Fig. 13e), the spatial variance is also significantly reduced using splitting. Again, the precipitation is represented

by only few superdroplets in the simulation without splitting, which leads to very high, localized precipitation rates. Due to

splitting, raindrops with large weighting factors are split into several superdroplets with smaller weighting factors, resulting in

the more realistic spatial representation of the precipitation.
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All in all, the splitting of large droplets, which results in an improved representation of the collision process and thus the

DSD, also partly influences the macroscopic properties of the cloud. In particular, rain water content, radar reflectivity and

precipitation rate are represented in a more realistic manner. Due to the improved statistics, the temporal and spatial variance

of these parameters is significantly reduced. However, the whole cloud life-cycle, which is driven by the general dynamics and

thermodynamics, is largely unaffected by splitting. Additionally, the merging shows no influence on the physical outcomes,5

but it allows a massive reduction of the number of superdroplets, reducing the computing time by 18% and the storage demand

(which is proportional to the number of superdroplets) by at least by 7% compared to simulations applying only splitting

(Fig.13a).

4.3 Cloud Field

4.4 Setup10

The setup for simulating a shallow cumulus field is based on the LES intercomparison study by vanZanten et al. (2011), using

their initial profiles for potential temperature and water vapor mixing ratio, the large-scale forcings, and surface fluxes. As in

the original, the model domain covers an area of about 12.8km× 12.8km× 4.0km in x-, y- and z-direction, respectively. The

grid spacing is ∆x= ∆y = 100m in the horizontal, and ∆z = 40m in the vertical. Moreover, the calculation of the domain-

averaged quantities follows (if possible) the descriptions given in the original case.15

Three different simulations will be presented. In the cases LCM NP87 and LCM NP400, the number of superdroplets per grid

box are 87 and 400, respectively. With initial weighting factors ofAinit = 1.89×1012 andAinit = 7.0×1012, respectively, these

represent a CCN concentration of 100cm−3 in each case. Moreover, one more simulation with splitting and merging is carried

out. For this configuration, in which the general settings of LCM NP87 are adopted, the splitting mode S with rspl = 20µm,

ηspl = 20, and Aspl = ∆x×∆y×∆z× 1m−3 = 4.0× 105 is used. Aspl is chosen to allow number concentrations as small as20

1m−3 to be represent by a single superdroplet.

Based on the previously presented results, the maximum number of particles per grid box is set to NP,max = 150. Merging

is applied in non-cloudy grid boxes for superdroplets with a radius smaller than rmer = 0.1µm and a weighting factor smaller

than Amer =Ainit/2.

4.5 Cloud Field Results25

The analysis is focused on the influence of splitting on the macroscopic properties of the shallow cumulus field. Figure 15

shows timeseries of (a) the LWP, (b) RWP, (c) ratio of the current superdroplet number to its initial value, (d) cloud cover (cc),

(e) precipitation rate, and (f) total precipitation. Despite the superdroplet number, all these parameters agree in a statistical

sense. In the cases without splitting, the total superdroplet number decreases slightly in the course of the simulation due

to precipitation (Fig. 15c), while the simulation with splitting increases the total superdroplet number by about 15%. Note,30

however, that both LWP and RWP are at the top of model variability documented in vanZanten et al. (2011) (gray areas), which

is in line with the results of Arabas and Shima (2013), who also used an LCM for the simulation of this shallow cumulus case.

14

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-110
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 17 May 2018
c© Author(s) 2018. CC BY 4.0 License.



Considering the temporal variability of the precipitation rate and total precipitation (Fig. 15e and f), no significant changes

are detectible using splitting or a very high number of superdroplets in contrast to the single cloud simulations presented in

the last section. This is foremost a result of the larger model domain alone, which attenuates variability simply by averaging.

Nonetheless, a positive impact of splitting on the representation of precipitation can be seen in the probability density function

of the surface precipitation rate (Fig. 16). For the simulation with 400 superdroplets per grid box and the splitting simulation,5

the probability for very high precipitation rates is smaller by about one order of magnitude compared to the simulation LCM

NP87. This clearly shows that extremely high precipitation rates, resulting from individual superdroplets with large weighting

factors, are mitigated when splitting is applied. Accordingly, splitting is important for a statistical appropriate representation of

individual rain events and necessary for the process-level understanding of the precipitation process, but the general features

of the cloud field, as it was the case for the single cloud, are largely unaffected.10

5 Conclusions

The main objective of this paper was the development and verification of a splitting algorithm to improve collisional growth

in Lagrangian cloud models (LCMs), which are known to insufficiently represented this process. This is especially the case

if the number of superdroplets is low and accordingly the number of real droplets represented by each superdroplet (the so-

called weighting factor) is high, leading to a oversimplified representation of the droplet size distribution (Riechelmann et al.,15

2012; Unterstrasser et al., 2017). Splitting is carried out by cloning superdroplets of interest (large radius and high weighting

factor) into a large number of identical superdroplets with commensurately reduced weighting factors, which improves the

representation of the DSD in the desired areas. An accompanying merging algorithm has been also introduced, too. It is

designed to merge two superdroplets into one, counteracting the (potentially) massive production of superdroplets due to

splitting and hence a significant increase of computational costs.20

The splitting and merging algorithms have been validated using box-simulations, a simulation of a single cumulus cloud,

and an established shallow cumulus test case. The box-simulations confirmed that the capability of an LCM to represent

the temporal evolution of a DSD due to collision and coalescence depends crucially on the number of simulated superdroplets

(Shima et al., 2009; Riechelmann et al., 2012; Unterstrasser et al., 2017). Without splitting, only simulations with more than 500

to 1000 superdroplets per grid box were acceptably reproducing literature references. By applying the new splitting algorithm,25

however, the results improved significantly using only up to 150 superdroplets per grid-box. Furthermore, the box-simulations

revealed that the radius from which splitting is applied is the most important parameter of the splitting algorithm. A value

of 15µm, which corresponds to the typical radii of the first colliding droplets in clouds, was found to be appropriate. Other

investigated parameters have shown only a minor impact on the results as long as a sufficiently large maximum number of

superdroplets is allowed to be produced by splitting (≥ 150).30

In the idealized single cloud simulation, splitting improved the representation of collisional growth with up to 70 % larger

maximum radii and a slight increase of the rain water path of up to 12 %. Moreover, splitting improves the spatial and tem-

poral representation of precipitation by distributing the precipitable water on more superdroplets with an accordingly smaller

15

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-110
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 17 May 2018
c© Author(s) 2018. CC BY 4.0 License.



weighting factors. It is important to note, however, that the life cycle and domain-averaged macroscopic properties are almost

not affected by the splitting process. If applied, the merging algorithm has been shown to reduce the computing time by 18%

and the storage demand at least by 7% in comparison to simulations with splitting alone. Since merging is restricted to cloud-

free regions, its application did not alter the simulated physics. Similar findings on the effect of splitting on the production of

rain have been made for the shallow cumulus test case.5

In the light of the fact that LCMs become increasingly important in the field of modeling cloud microphysics, it is necessary

to minimize the (typically) large demand of memory and computing time required for their application. Thus, a fixed number

of superdroplets needs to be replaced by a dynamic number, which adapts interactively to the given physical and numerical

requirements. In this regard, the presented methods follow the approaches by Grabowski et al. (2018), in which superdroplets

are only created after activation, or Naumann and Seifert (2015), who restricted the superdroplet approach to the representation10

of raindrops. Of course, all these approaches have their specific advantages and disadvantages, but they are necessary steps to

apply LCMs in a wider range of future applications.

Code availability. The LES model used in this study (revision 2263) is publicly available on https://palm.muk.uni-hannover.de/trac/browser/

palm?rev=2263. For analysis, the model has been extended and additional analysis tools have been developed. The extended code is available

from the authors on request.15
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Figure 1. Mass density distribution for the single-box approach after 3600s. The black solid line denotes the solution of Wang et al. (2007).

The colored dashed curves show the solution of the LCM with different numbers of superdroplets per grid box.

Figure 2. Moments of the mass density distribution as a function of time obtained from the single-box simulations. The black solid line

denotes the solution of Wang et al. (2007). The colored dashed curves show the solution of the LCM with different numbers of superdroplets

per grid box.
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Figure 3. Mass density distribution for the single-box approach after 3600s. The black solid line denotes the solution of Wang et al. (2007),

the black dashed curve the reference case (without splitting). The colored dashed curves show solution for splitting simulation with different

configurations.

Figure 4. Moments of the mass density distribution as a function of time obtained from single-box simulations. The black solid line denotes

the solution of Wang et al. (2007), the black dashed curve for the reference simulation (without splitting). The colored dashed curves show

the solutions for different splitting configurations.

20

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-110
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 17 May 2018
c© Author(s) 2018. CC BY 4.0 License.



Figure 5. Same as Fig. 1 but for the multi-box approach, i.e. interactions between the grid boxes are possible.

Figure 6. Same as Fig. 2 but for the multi-box approach, i.e. interactions between the grid boxes are possible.
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Figure 7. Same as Fig. 3 but for the multi-box approach, i.e. interactions between the grid boxes are possible.

Figure 8. Same as Fig. 4 but for the multi-box approach, i.e. interactions between the grid boxes are possible.
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without splitting  with splitting
(and individual trajectories of clones)

Figure 9. Schematic representation on how splitting affects the spatial distribution of large superdroplets. The squares outline the different

grid boxes with superdroplets of the size of cloud droplets (blue) and superdroplets representing rain drops (dark red). Without splitting (left),

the rain drop is represented by only one superdroplet. In the splitting case with multi-box approach, this superdroplet is cloned into several

superdroplets, which are able to move in other grid boxes (due to their individual SGS-velocities) where they initiate or affect collisional

growth.

23

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-110
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 17 May 2018
c© Author(s) 2018. CC BY 4.0 License.



Figure 10. Mass density distribution for the box-simulation after 3600s. The black solid line denotes the solution of Wang et al. (2007). In

(a), sensitivity studies for different values of NP,max are presented. In (b), simulations for different values of ηmax are shown. In (c), results for

different splitting radii are displayed. All Sensitivity studies are conducted using the splitting mode G.
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Figure 11. Mass density distribution after 1800 s for the idealized single cloud simulations using parameters described in Tab.1.

/

Figure 12. Total number of superdroplets per logarithmic radius bin after t = 1800s for the idealized single cloud simulations using param-

eters described in Tab.1.
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Figure 13. Timeseries of different variables for the idealized single cloud simulation for different initial numbers of superdroplets and

splitting configurations. In (a), the ratio of the actual and initialized number of superdroplets in the whole model domain is shown. The liquid

water path (LWP) and rainwater path (RWP) are displayed in panels (b) and (c), respectively. In (d), the total radar reflectivity is shown.

Panels (e) and (f) show the precipitation rate and total precipitation, respectively.

Figure 14. Vertical cross-sections of the precipitation rate for the reference case (left) and the splitting case S20 (right).
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Figure 15. Timeseries of (a) the liquid water path (LWP), (b) rainwater path (RWP), (c) ratio of the actual number of superdroplets to the

initial number of superdroplets, (d) cloud cover, (e) precipitation rate, and (f) total precipitation for different initial numbers of superdroplets

and splitting configurations. The gray areas in (a), (b) and (d) indicate the documented model variability of the simulated shallow cumulus

case (vanZanten et al., 2011).
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Figure 16. Probability density function of precipitation rates for different initial numbers of superdroplets and splitting configurations.
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